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CN angular distributions in EMPIRE
! Previously CN angular distr. 

were calculated by rescaling 
ECIS results - not fully 
consistent and cumbersome

2

! Native EMPIRE calculations 
required replacing Tl with Tlj  

! New HRTW subroutine was 
totally recoded in F90

ECIS
EMPIRE

56Fe(n,el) Ein=709 keV



Standard view of two-body reaction
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Computing angular distributions is 
easy, right?

! The angle-differential cross section for a two body channel 
in EMPIRE is the usual 
!

!

!

! where either term can be written 
!

!

!

! textbooks give BL in channel spin Sa-la (Sa=IA+Ix) coupling:
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and the compound nuclear reaction part is associated
with the energy averaged fluctuating part:
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Although we formulate these the following results in
terms of the T-matrix, the transition to the on-shell S-
matrix is relatively straightforward. The S-matrix is
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In the remainder of this note, we will derive the ex-
pression for eq. (11) in a coupling scheme that is natural
for implementation in EMPIRE.

II. FORMULATION USING CHANNEL SPIN COUPLING

Several sources ([1–5]) couple to the channel spin ~
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} captures all the other quantum numbers that are unimportant for the angu-
lar momentum coupling work. Here (`
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|JM) are the Clebsch-Gordan coe�cients (a.k.a. vector coupling
coe�cients) [6] and are defined in terms of 3-j symbols as (Edmonds eq. (3.7.3))
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Note, m
a

+M

a

= M .
Following Blatt and Biedenharn [5] and Lane and Thomas [2], Fröbrich and Lipperheide [1] show (note our notation

is slightly di↵erent)
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Here they used the fact that ~k
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It is independent ofm
b

, M
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andM because the Hamiltonian is rotationally invariant. The Blatt-Beidenharn coe�cient
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Note, that we write our Z in the notation of Fröhner which incorporates the time-reversal phase convention correction
of Lane and Thomas (and others) [2] from Blatt and Biedenharn’s original definition in [5].
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Di↵erential two-body compound nuclear cross sections, including the

width-fluctuation corrections
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We figure out the compound angular di↵erential cross sections, following mainly Fröbrich and
Lipperheide, but with the angular momentum couplings that make sense for optical model work.
We include the width-fluctuation correction.

I. INTRODUCTION

Consider the reaction x+A ! y+B. Want to compute
the di↵erential cross section for outgoing b’s (whatever
they are):
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Here the reduced mass and relative momentum of the
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Here, ~I
x

is the spin operator for the projectile x, ~I
A

is the
spin operator for target A and the two particle state a is
composed of the projectile x and the target A. Similarly,
~

I

y
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B

is the spin
operator for residual nucleus B and the two particle state
b is composed of the ejectile y and the residual nucleus
B.
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where E

a

is the energy of the incoming channel.
We assume that the beam and target are unpolarized

and that we don’t measure the outgoing spins, so really
we want the following spin-averaged cross section:
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In the fast region, we only concern ourselves with the
energy averaged cross section as resonances are no longer
resolvable. Therefore, we split the T-matrix into an
energy-smooth part T
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and a part that fluctuates with
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Inserting this into eq. (5), we find that the energy average
cross section is a sum of two parts:

d�

a!b

d⌦
b

=
d�

dir

a!b

d⌦
b

+
d�

CN

a!b

d⌦
b

(9)

where the direct reaction part is associated with the en-
ergy averaged T-matrix:
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and the compound nuclear reaction part is associated
with the energy averaged fluctuating part:
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Although we formulate these the following results in
terms of the T-matrix, the transition to the on-shell S-
matrix is relatively straightforward. The S-matrix is
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In the remainder of this note, we will derive the ex-
pression for eq. (11) in a coupling scheme that is natural
for implementation in EMPIRE.

II. FORMULATION USING CHANNEL SPIN COUPLING

Several sources ([1–5]) couple to the channel spin ~
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coe�cients) [6] and are defined in terms of 3-j symbols as (Edmonds eq. (3.7.3))
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Following Blatt and Biedenharn [5] and Lane and Thomas [2], Fröbrich and Lipperheide [1] show (note our notation

is slightly di↵erent)
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It is independent ofm
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andM because the Hamiltonian is rotationally invariant. The Blatt-Beidenharn coe�cient
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Note, that we write our Z in the notation of Fröhner which incorporates the time-reversal phase convention correction
of Lane and Thomas (and others) [2] from Blatt and Biedenharn’s original definition in [5].

(Note: here T is T-matrix, not transmission coefficient)



Textbook equations don’t work for 
Hauser-Feshbach
! Natural coupling for transmission coefficients is Tlj so need 

ja-IA (ja=Ix+la) coupling 
! Result is 
!

!

!

! I lost two weeks of my life (re)deriving this 
! Simplifying to the HF case:
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eq. (6.2.12) [6]. Furthermore, using the fact that `
a

and `

b

are integers means we can ignore factors of (�1)2`a and
(�1)2`b so we arrive at
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Inserting eq. (32) into eq. (28) (including the additional (�1)�2(I
A
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x

) phase factor), we arrive at our main result
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The lower line in the previous equation is really two orthogonal matrices (see Edmonds eq. (6.2.10) [6]) and are a pair
of unitary transforms that recouple the angular momenta in the first line up to the total angular momenta J and J

0.

IV. ANGULAR DISTRIBUTIONS FOR COMPOUND NUCLEAR REACTIONS IN `j COUPLING
SCHEME

It is straightforward to repeat the algebraic steps from eqs. (6–8) on the quantity
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The first term on the right hand side of the previous equation is the direct part in our alternative coupling scheme.
The righthand term is the compound nuclear part. We make the usual compound nuclear reaction approximation
and assume that the components with di↵erent angular quantum numbers are uncorrelated giving
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So the B
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coe�cient for compound reactions is
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In the Moldauer approach to the width fluctuation cor-
rection [7], the average square T-matrix in terms of trans-
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eq. (6.2.12) [6]. Furthermore, using the fact that `
a

and `

b

are integers means we can ignore factors of (�1)2`a and
(�1)2`b so we arrive at
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Inserting eq. (32) into eq. (28) (including the additional (�1)�2(I
A

+I

x

) phase factor), we arrive at our main result
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The lower line in the previous equation is really two orthogonal matrices (see Edmonds eq. (6.2.10) [6]) and are a pair
of unitary transforms that recouple the angular momenta in the first line up to the total angular momenta J and J

0.

IV. ANGULAR DISTRIBUTIONS FOR COMPOUND NUCLEAR REACTIONS IN `j COUPLING
SCHEME

It is straightforward to repeat the algebraic steps from eqs. (6–8) on the quantity
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The first term on the right hand side of the previous equation is the direct part in our alternative coupling scheme.
The righthand term is the compound nuclear part. We make the usual compound nuclear reaction approximation
and assume that the components with di↵erent angular quantum numbers are uncorrelated giving
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So the B

L

coe�cient for compound reactions is
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In the Moldauer approach to the width fluctuation cor-
rection [7], the average square T-matrix in terms of trans-

mission coe�cients T J
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(Note: here T is 
T-matrix, not 
transmission 
coefficient)



As I said, we coded this in EMPIRE

! To make sure it was right, we wrote F95 unit tests for  
!
• 3-j symbols 
• 6-j symbols 
• Racah coefficients 
• 9-j symbols 
• Blatt-Biedenharn Z and Z-bar coefficients 
!

! Along the way, we found bugs in the equivalent routines in 
Fudge (Python) and CoH (C++) and made fixes 
• (T.K., I still have to get you yours) 

! We couldn’t figure out TALYS implementation and suspect 
it is wrong
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Proof the darn thing works

7

56Fe(n,el) 
E=37.4 keV

ECIS
EMPIRE



Proof the darn thing works
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Proof the darn thing works
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Proof the darn thing works
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This wasn’t enough testing, so we 
compared EMPIRE to RRR data

! HF only 
works on 
smooth 
cross 
section, so 
we 
smoothed 
the angular 
distributions 
from Leal’s 
56Fe 
resonances
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How did we smooth?

! Assume we can smooth cross section & Legendre 
moments of angular PDF: 
!

!

!

! where can use Lorenzian (or Gaussian it turns out)

12
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FIG. 6. Another zoomed view of the comparison of ENDF total inelastic cross section to that inferred by the Gelina experiment.

FIG. 7. Comparison of ENDF inelastic to the first excited state cross section to that inferred by the Gelina experiment. The
lower panel shows a close up of the structure from 1-2 MeV.

bility distribution P (µ = cos(✓)|E), given in the center of
mass frame of the neutron-target system. In the CIELO
starter files, they are expanded in Legendre moments:

d�(E)

d⌦
=

1

4⇡
�(E)P (µ|E) =

�(E)

4⇡

1X

L=0

PL(µ)CL(E)

(11)

To smooth these distributions, we do
⌧
d�(E)

d⌦

�
=

1

4⇡

1X

L=0

PL(µ) h�(E)CL(E)i (12)

We assume that the smoothed cross section and angular
distribution factorize:

⌧
d�(E)

d⌦

�
⇡ h�(E)i

4⇡

1X

L=0

PL(µ) hCL(E)i (13)

This allows us to smooth the individual MT=4 Legendre
moments as a function of incident energy. Note, the L =
0 term is trivial as CL=0 = 1.
As with the cross section data, we must take care new

thresholds and at the end of the data tables. In the
CIELO starter files, the MT=4 distributions end at the
end of the resolved resonance region, at 2 MeV. Within
2I of 2 MeV, the smoothing gives meaningless results.
Since the angular distributions must be isotropic exactly
at threshold, all of the smoothed distributions must ap-
proach zero within 2I of inelastic threshold. Therefore,
we remove all values from the smoothed tables below 2I
of the threshold and linear interpolate from this cut-o↵
point down to threshold. Figs. 15–fig:MT51AngleDist
show the results of this smoothing exercise using the
Gaussian smoothing profile and I = 100 keV.
In examining these figures, a few things are apparent.

First, due to the couplings of the angular momenta of the
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Averaging cross section data so we can fit it

David Brown1, ⇤

1
National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY

(Dated: October 23, 2014)

Make average versions of 56Fe(n,tot), 56Fe(n,el), 56Fe(n, �) and 56Fe(n, n0) cross sections, with
some notion of uncertainty estimates.

I. INTRODUCTION

The 56Fe cross section we are interested in have a lot of
fluctuations. We would like to fit the average of the cross
section with cross sections calculated within EMPIRE
[1].

EMPIRE, being a Hauser-Feshbach theory based nu-
clear reaction code, essentially requires cross sections to
be smoothed using a Lorentzian profile. Indeed, most
textbooks describing Hauser-Feshbach theory derive it
using such a smoothing profile [2]:

L(E,E

0) =
1

⇡

I

(E0 � E)2 + I

2
. (1)

With this, functions which are analytic in the upper half
of the complex E-plane can be averaged with a little bit
of complex analysis:

hf(E)i =
Z 1

�1
dE

0
L(E,E

0)f(E0)

= f(E + iI) (2)

Here, we will explore various smoothing profiles and
demonstrate their practical interchangeability and we
will compute the smoothed 56Fe cross sections, with un-
certainties.

We plan to fit EMPIRE to these cross sections in the
fast region only (say above 500 keV), but use only the
part of the EMPIRE calculations above the resolved res-
onance region. We may also use the angular distributions
from EMPIRE through the resonance region provided
they behave themselves.

⇤
dbrown@bnl.gov

II. SPECTRUM WEIGHTING

Given a weighting spectrum �(E), we intend to average
a cross section as follows

h�i =
Z E

max

E
min

dE �(E)�(E) (3)

In this note, weighting spectrum is really a smoothing
profile of some sort. We assume the weighting spectrum
is normalized over the integration region defined here so

Z E
max

E
min

dE �(E) = 1 (4)

To compute the uncertainty, we resort to the basis
function expansion of the covariance as follows:

�2
�(E,E

0) =
X

ij

�2
�ijBi(E)Bj(E

0) (5)

In the ENDF format, all covariances are assumed to be
grouped in energy so the basis functions are simple win-
dow functions:

Bi(E) =

⇢
1 Ei  E  Ei+1

0 otherwise
(6)

This basis is an orthogonal basis, with the inverse being
B

�1
i (E) = (Ei+1 � Ei)�1

Bi(E).
With this, the uncertainty of the average cross section

is

� h�i =
rZ

dEdE

0
�(E)�(E0)�2

�(E,E

0)

=
qP

ij �
2
�ij hBii hBji (7)

In general, the covariance between two di↵erent weight-
ing spectra (e.g. the smoothing function evaluated at
too di↵erent energies) can also be computed, but as it
can not be currently used in the fitting in Sam’s code,
we won’t compute it here.



More proof the darn thing works (L=1)
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More proof the darn thing works (L=2)

14

0 1 2 3 4 5
E (MeV)

0

0.1

0.2

0.3

0.4

0.5

0.6
C L=

2(E
)

Original RRR
Smoothed RRR
EMPIRE



More proof the darn thing works (L=3)
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More proof the darn thing works (L=4)
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More proof the darn thing works (L=5)
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More proof the darn thing works (L=6)
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